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A novel proof of the solvability of the Lur’e equations which appear in the the- 

ory of absolute stability is presented. This proof makes it possible to generalize 
the results to the Hilbert spaces and unbounded operators. 

Let the following real matrices be given: A and P are n x n. matrices, I3 and Q 
are n x M matrices and R is an m x m matrix ; P and R are symmetric ones. We 

regard as the Lur’e equations, the equations with respect to the real symmetric n x m 

matrix M and n x m matrix L of the form 

MA + A*M = -P + LL*, LK = MB + Q, K*KrR (0.1) 

The equations (0.1) with m = 1 were introduced in a slightly different form by Lur’e in 

connection with the study of the problem of absolute stability [l]. The importance of 

these equations here lies in the fact that as soon as their solutions exists, so does the glo- 
bal Liapunov function of the initial nonlinear system. 

Equations of the type (0.1) for an arbitrary value of m also called the generalized 

Lur’e equations, were introduced in [2] in connection with the generalized problem of 

absolute stability containing many nonlinearities. The sufficient conditions of solvability 

of Eqs. (0.1) in their. closed form, for m = 1, A - Hurwitz matrix, R > 0 and R = 0, 

P < 0 , were first given in [3]. These conditions were generalized further [3 - 71 to the 
case of an arbitrary m >, 1, R > 0 and an arbitrary matrix 4 , and sharpened to the 

necessary and sufficient conditions: U (0) >, 0, o E (-00, -t_o~) where 

n (a) == R _I- 2Re (Q* (joE - A)-lB) + B* (-joE - A*)-‘P (jd - A)-IB (0.2) 

the asterisk denotes the transpose of the matrix, E is a unit n x n matrix and i =,)/--1).- 

The’ case K ‘2 0 was also investigated in [8]. 

We note that the connection between the solution of (0.1) and the solution of the vari- 
ational problem was first discovered by Popov (see [7] who showed that the solvability 

of (0.1) implies the existence of a solution of the corresponding variational problem. 

Below we establish the converse relation with the help of an idea of Lyons concerning 
the unlinking of the Hamiltonian systems [9]. 

1. Novel proof of the rolvabllity of the Lur’e aquationa in the 
c PBO of R > 0.. The proof is based on the following theorem (the assertion 1” of the 
theorem is already known, see [lo]). 

Theorem 1. Let A be a Hurwitz matrix and let the following frequency inequal- 
ity hold for some E > 0 : 

II (co) > eE (1.1) 

Then the assertions 1” and 2’ both hold. 

1”. There exists a solution of the variational problem of the minimum of the func- 
tional 1, [u (t)] (h is an n-vector and u is an m-vector) 
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z,lUwl= IL(y(h,u)(t),y(h,u)(t); u(t)*uW)dt s 
for all u (9, t E (0, 00) sat&ying the inequality 

P2 (u) = i II u (t) llm2dt < w 

0 

m 

901 

(1.2) 

(1.3) 

where 

(II I_4 P)ll,2 = (u (t), u Q)>, = Ui2(t), u = (up. . ., 24,)) 

i=1 

P (2* Y; u, u, = @?A “>n + <x, Qu>~ + <y, Qqn + (R~, v>, (1.4) 

y (h, u)(t) = eA’h + s eA(- u (z) dz 

0 

The solution is unique within the values on the set of the t-axis of zero measure. 
2”. The symmetric matrix M defined by the expression 

m 

’ % Mh2) = (Mb, h2) = 
s 

P (y(h,, Q”), y (h,, u2”); ulo, u2”) dt (1.5) 
0 

where uio (t) is the solution of the variational problem formulated above with h= hi (i = 

1, 2),exists and satisfies the relations (0.1). From now on we shall omit the dimension 
indices at the scalar products and norms, in the cases when their dimensions are obvious. 

Proof. 1”. Since A is a Hurwitz matrix, the functional Zh Iu] is defined for all 

functions. u (t) satisfying (1.3), and is continuous on the norm (1.3). The functional I, 
can be written in the following form: 

Zh Iul = &I Iu (t), u (Ql - 2Lh [u (t)l + I,” (1.6) 
co 

’ I;, 1~1 = - 
s 

[@Y(U)* y(h)> + <y(h), QY &)>I dt 
0 

Y (u) (t) = Y (0, u)(t), Y (h)(t) = eA’h 

m 

no 1% ~1 = 
s 

P (Y (u)> y(v); u, v) dt, 1,” = 1, P, (t)l 
0 

(0, (t) is an identically zero function belonging to the domain of definition of the func- 
tional), 

The form no [u, u] is continuous,symmetric and bilinear. For the functions u (t) satis- 

fying the condition (1.3) we have, by virtue of the Parseval equation and condition (Ll), 
+a 

no [u (0, u (l)l = 4 
s 

(II (0) f, Co), f,, (0)) dw >, (1.7) 
-cc 

e~ljU(t)pdt=e.p(u), ~u(t),jardt f, (0) = 

0 0 

(the form no Iu, V] is coercive [S]) . From this it follows [S] that the extremal element 
u” (t) of the functional (1.2) exists and is unique under the condition (1.3). The unique- 
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ness of the extremal element u” (tf is understood in the sense of the norm of p (u). 

2”. From [9] it also follows that the extremal function u” (t) must satisfy the equation 

no [uO (% a (Gl = Lh [u it)] (1.3) 

for all u (t) satisfying the condition (1.3). Taking into account (1.4) and (1.6), we can 

transform the above equation to the form 

00 

f 
[<Py”,y) + <y”, Qu, +a, Qu">+(R~",~>l~t=O (1.9) 

0 

(Y” 0) = Y 05 at), y (t) = y (u)(t) = y (6, u)(t)) 

Conversely, only the extremal element of the functional I, can be a solution 1~’ (t) of 

(1.9) with condition (1.7) (with the accuracy within the values on the set of measure 

zero). 

Next we define the ~~tinnous function ‘I! (t) 

Y(t) = r e-A*(t-rf (Py” (z) + Quo (r)) dz 

The function VP (t) obviously satisfies the relations (1.11) 

-$ Y = - .‘i*Y - Py” (t) - Quo (t) 

CD 

BY virtue of (1.6), (1.9) - (1,12), we have 
co 

o= x 
~~~'I,+A*n.+~~"+Q~o,y(~)~dt=~<;iiV+A*P,y(u)>dt 
0 0 

0.7 m 

s 
[(Y”, Qu> + <Ru”, u>] dt = - 

S< 
$yW+Ay(u),\Y)dt- 

0 0 

OD m 00 

5 
~Q'~~-f-Ru~,~~dt = <--Bu, Y> dt- (Q*Y”+RzP,~>&= 

s s 
0 0 0 

oil 

- 

s 
<B*Y + Q*y” + RP, u) dt 

0 

- 

(1.10) 

(1.11) 

(1.12) 

(I., 13) 

Since u ft) in these equations is an arbitrary function sa~fy~g (1,3), we have the rela- 
tion 3* Y(t) =--Rue (t)-Q*y* (t). By virtue of the condition (1.1) R > 0, therefore 
(1.13) CII be written in the form 

u0 (t) = --R-l (B* 3’ (t) + Q*y’ (t)) (1.14) 

The above relation implies, in particular, the continuous character of u” (t). 
Let us consider the mapping which places the n-vector h in correspondence with the 

function Y. The mapping is linear by virtue of (I.. 9) and (1.10). It follows that there 
exists a n x n matrix M such, that Mh = Y (0). Moreover, it turns out that the matrix 
M satisfies the equation MY0 (t) = y (t), t>o (1.15) 

The proof of the relation (1.15) is based on the concepts given in Ch. 3 of the monograph 
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[9]. Consider the functional 

Zh”[U] =[p(y,(h. u), y,(h,u); u.u)dt, s>O 

8 
(1.16) 

y, (h, u) (t) = eA-) h + i eA-) u (z) dr 

8 

Repeating the previous arguments for this functional, denoting by us0 W, t) the extremal 
element of the corresponding variational problem and by yso (h, t) and vy, (h, t) the 
functions of the form 

y,O 0% t) = Y, (h, ILSO) (t)* YS (h, t) = 5 e-A’@-r) X 

[Py,” (h, z) + Q( (hv z)l dr, t 2 sf 

we find that there exists a matrix M, satisfying the relation 

M,ysO (g, s&Y, (g, s) (g E Rn, s > 0) (1.17) 

Let us take, as g in (1.17), the vector g = y” (h, s) which represents the value of the 
function Y” (t) of the initial variational problem (s = 0) at the instant t = s. Then by 

virtue of the stationary character of the problem, we have 

!/so (g, t) = yo” (g, t - 4 = Y0 (g, t - 4, Y8 (g, t) = ‘yo (g, t - s) 

and consequently the operator M, in (l, 1’7) is independent of s. Further, by virtue of the 
principle of optimality, the fact that the functions U” (t) and us0 (t) are extremal, it fol- 
lows 

ySo (g, t) = yoo (h, t), vy, (g, t) = v’o (h, t) g = YO” (h 4, h E R”, t >, s 

which, together with (1.17) (taking into account the fact that M, is independent of s, 

and s is arbitrary), yield (1.15). 

The relations (1.4), (1. ll), (1.12), (1.14) and (1.15) in turn yield, for any h,, h, E Rn , 

the following sequence of equations: 
co 

<J&S h2)=<Y(h1,0),y0(h2,0)>=- 

s I< 
-$ y (hl,% YO(h, t,> + (1.18) 

0 

< 
y (h,, t), &~"(h2, t)>] dt = [P (~"(4, 9,~" (h2, t);u’(h,,t) 

0 

u” h t)Wt = (Y" (h,, 01, ly (h,, 0)) = <hl, M/S,) 

i. e. the relation (1.5). Finally from (1. ll), (1.14), (1.4) and (1.15) follows 

O,=M~yO(t)_-~ Y(t) = M (Ay” (t) + Bu” (t)+A*Wt)+ 

py” (t) + Quo (t) = (MA + A’M) Y’ (t) + WB + Q) u" (t) + PY” (t) 

from which, with (1.5) and (1.14) taken into account, we obtain 

sy” (h, t) = e,, S = MA + A*M + P - (MB + @R-l (MB + Q)* (1.19) 

Going in (1.19) to the limit as t -) 0 and assuming that h is an arbitrary n-vector, 
we find that S is an n X n zero matrix. This is equivalent, for R > 0 , to the relation 

(0,1), which completes the proof. 
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Theorem 2. Let such mX n matrix.Fexist for the matrices A and B where A 

has no spectrum on the imaginary axis, that A, = A f BF is a Hurwitz matrix. Then 
a symmetric matrix M satisfying (0.1) will exist provided that the relation 

II (0) > E (E - B* (-joE - A*)-lF*)(E - F (joE - A)-1B) (1.20) 

holds for some E > o . 
Proof. We note that 

(II (0; A,, B, Pi, QI, Wf,,, f,) = <II (0; A, B, P, Q, R)f,, fd 
(ul (t) = u (t) - Fy (t), P, = P + F*RF + F*Q* + QF, Q1 = Q + F*R) 

Therefore, when the condition (1.20) holds for the matrices A,, B, P,, Q1 and R , Theo- 
rem 1 is true and a matrix M will exist satisfying Eqs. (0.1) for the altered values of 

the matrices appearing in the expression, Passing in the relations (0.1) to the initial mat- 
rices A, P and Q, we find that M also satisfies the initial relations (0.1). 

Corollary. Let a pair of matrices (A, B) be filly controllable [?‘I. Let also the 
matrix A have no spectrum on the imaginary axis and the condition (1.1) hold. Then 

a symmetric matrix M exists satisfying the relations (0.1). 
In accordance with [‘I], if the pair {A, B) is fully controllable, then the matrix F from 

Theorem 2 will exist. Moreover we note that sup, II F (joE - A)-lB II < 00, and this 

implies that the above assertion follows from Theorem 2. 

2. Sufficfant condition8 of rolvrbfllty of tha Lur’a equation8 
in a Hilbart #pace. The proof of Theorem 1 admits a generalization to arbitrary 
Hilbert spaces and to the case of an unbounded operator A. Such generalization is use- 

ful in studying nonlocal stability and instability of dynamic systems described by partial 

differential equations. 
In what follows, we shall use the following notation. If H is a Hilbert space over the 

field of real numbers, then (. , .)H is a scalar product in this space ; eH denotes the zero 

element of H; V* is a space dual [ll] to V; <f, g), g E V, f E V* is the value of the 
functional f on the element g; T : HI --) H; is a linear operator acting from Hr to H, ; 
8 (H, 4 H.J is a zero mapping H, + H, (or its equivalence class in the sense of the cor- 

responding norm); ~2 (r, T; H), ‘G < T is a Hilbert space of absolutely square integrable 
mappings (‘t, T) - H with a uniquely defined scalar product and L2 (r; H) = L2 (7, 00; 

H). We shall also make use of the Sobolev type [9] space w (a, T; V) , defined as fol- 

lows : 
6V (t, T; V) = y (t) 1 y (t) E L2(z, T; V), $ E L2(t, T; I’*)} 

So, let H, V and U be Hilbert spaces over the field of real numbers [ll], with the 
inclusion V c H = H* c V*, the imbedding v + II is continuous and the set of ele- 
ments of the space k’ is dense everywhere in H. (This, in particular, implies that <f, g: == 
<f&H if f E H and g E H.) Let A be a continuous linear operator V -+ V*, closed 
in the space H , the domain of definition D (A) of which is dense in V. 

We note that D (A) is a set of elements h of the space V satisfying the condition 
Ah E H [9, 111. Consequently the operator A will be unbounded (generally speaking) 
on H. The operator A becomes bounded if V = H. 
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Let us consider a linear evolutionary equation [9] of the form 

5 y (t) = ‘%Q) .+ f (0 (2.1) 

We shall say, in accordance with [9], that a solution Y (t) of (2.1) on some interval 
(7, T) is a function of the space W (z, 2’; V) such, that or any function E (t), F, E V 

smooth and finite on the interval (.t, T) , the following relation holds: 

T 

s ‘K L ‘Y V), & E, w> + (4 (9, 4 (Q> + <f (t), E (t)> 
1 

dt = 0 (2.2) 

Assumption 1. For any hE H, T > r~ and f(t) E L2 (0, T; V*) there exists 
a unique solution y (t) of (2.1) satisfying the initial conditibn 

Y (0) = h (2.3) 

The solution depends continuously on the initial values of f (t) and h in the sense, that 

(h, f) --, y (t) is a continuous mapping of the space H X L2 (0, T; V*) onto the space 
w (0, T; V). 

Ass u m p t i on 2. For a given function g (t) E L2 (0; H) a H-continuous function 
\y (t) E w (0; V) exists and is unique. The latter function has values in the space V, and 

satisfies (in the sense of Eq. (2.2) in which T = 00, f = g and the operator A is replaced 
by I-A*11 the equation 

$‘Y=-/I*Y+g(r) (2.4) 

where A* is the operator V -t I/‘* conjugate to A [ll]. 
Note 1. A theorem exists which states that any function belonging to the space 

W (0, 2’; V) which is modified on the set of zero measure in the appropriate manner, 

will be a continuous function of 10, Tl -, H [9]. Therefore Eq. (2.3) is meaningful 

and it also follows that the function lo (t) E W (0; V), representing the continuous map- 

ping[O,w]+H,hasazecolimit CJ,ast-+ml9]. 
Definition 1. We say that the operator A is L2.-stable if the Assumption 1 holds 

for this opecatoi when T = 03. Let B be a linear bounded operator U-V*. We denote 

by y (h, u)(t) the solution of the equation 

dy/dt = Ay + Bu (t)v u (t) E L2 (0; U) (2.5) 

with the initial condition (2.3). We denote this solution by Y (u)(t) when h = O,, and 

by y (h)(t) when u (t) = 8 (RI -t U) . 
Assumption 3. Thereexistsaset V,,D (A)c Vlc V suchthatif h= VI is 

a function continuous in t, then y (h, u)(t) is a continuous function of (0, 00) - V. We 
shall now formulate a theorem which, in the finite-dimensional case, becomes analogous 

to Theorem 1. 

Theorem 3. Let A be an L2-stable operator and the Assumptions 2 and 3 hold. 

Let also P, Q, R and B be linear bounded operators H --) H, U - H, U - U and 

u - v* , respectively, and let the following inequality hold for some E > 0 for all 

U (t) E La (0; U) : 00 

s [<RU (t), u (t),u + 2 (Y (u)(t), Qu (th + 
0 

(@/(u)(t), y(u)(tbHl dO=+u(t)b2dt 
0 

(2.6) 
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Then the assertions 1” and 2” are valid. 
1”. A function $ (t) E L2 (0; lJ) satisfying the equation 

(2.7) 

exists for any h cz H . Since u0 (t) is an element of the space Z? (0; V) , it can be 
defined uniquely. 

2”. A linear bounded operator M : H - V exists satisfying, for any h, E H I the re- 
lation (1.5) where uiO (t) is the solution of the variational problem (2.7) with h = ki, 
and also satisfying the relation 

(2.8) 

((M*A + A*M + P)& “rl) = (LL*& q>, L = (M*B -/- Q)K-1, K*K = R; 5, q = V 

where M* is the operator V* --+ H conjugate to M [ll]. (The operator M* acting 
from Vy to H is defined by the equation <M*f, h> = <f, Mh) which holds for ail f E 
V* and h E v.1 

The relations (2.8) represent a generalized form of the relations (0.1). In place of 
the vector spaces Rn, R” and of the matrices, we have the Hilbert spaces H, V and U 
and the linear operators acting in these spaces (here the operator A is an unbounded 
operator in H). The latter circumstance enables us to utilize the relations (2.8) during 
the ~v~tigatio~ of nonlinear d~tr~u~d systems in the manner, in which Eqs. (0.1) 
were used (by Iakubovich and his coworkers) in studying the systems described in terms 
of the ordinary differential equations. Therefore Eqs. (2.8) can be regarded as the Lur’e 
equations in Hilbert spaces. 

Note 2. Theorem 2 gives the sufficient conditions of solvability of the Luc’e equa- 
tions,provided that A is a stable operator and R is a positive definite operator. The 
method discussed here was used in [12] to study the case R 2 0, but the operators .A in 
that case were bounded. 

Note 3. In the case when the Fourier transform fv (0) of the function {y (u)(t) 
when .t > 0 and eH when t < 0} is connected with the Fourier transform fu (01) of the 
function {U (t) when t >, 0 and BU when t < O> by the relation 

f# (0) =: fioE - ‘4)-lBfp, (0) (2.9) 
(which will hold when B u ez H, as well as in a number of problems, where Ru C+Z r*, 
e. g. in the investigation of controlled systems described by partial differential equations 
with the control appearing in the boundary conditions [9]), the condition (2, ‘7) can be 
written in the following frequency form: 

<R @fu, u> > e Ii u Ii 2, R ((,,) - R + Q* (j&3 - A)-IB + B* (--_ioE - (2.10) 
A*)-%? + B* (-joE - A*)-1P (joE - A)-1B 

When the operator B has its left inverse B_, the condition (2.6) can be replaced by 

(I(--,ioE - A*)B_* (R - eE)B_ (joE - A) + 2Re QB, (joE - A) + 

Plfy (o),fv 0)) > 0, 03 = t-00, +m) 
(2.11) 
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In contrast to the condition (2.10),(2,11) contains the operator A itself instead of its 
resolvent. In the case of differential operators A this helps to obtain the relations bet- 
ween the parameters for which the condition (2.6) holds, while investigating specific 
partial di’fferential equations. 

Proof of Theorem 3, 1”. We write the functional Ih [u], just as in the finite- 
dimensional case, in the form (1.6). But now no [u, ul and Lh [ul represent the function- 
als U X U -)r RI and H X U - Rx in which 1”, P Q and R are the operators from 
the condition of Theorem 3, while Y (u)(t) and y (~)(~) are the corresponding solutions 
of (2.5). The form no [u, 0): Lz (0, u) x L2 (0, U) + RI is a continuous and symmetric 

one ; when the condition (2.6) holds,it also becomes coercive [9]. This implies, by vir- 
tue of Theorem 1.1 of ch. 1 of [9], the existence and uniqueness of the element u” (t) E 
L2 (0; V) satisfying the relation (2.7). 

2’. We introduce the function I (t) E W (0; V), having defined it in accordance 
with the Assumption 2 as the unique solution of the equation 

$- ‘Y(t) = - A*Y (‘) - Py” (t) - QUO (t), YD (t) = y (k uO) (1) (2.12) 

By virtue of (2.12) and Assumptions 1 and 2, the operations in (1.13) remain valid here ; 
moreover B* and Q* are the operators v -+ U and H --) U conjugate to the opera- 
tors B and Q. Thus we arrive at the relation 

u” (t) = -R-l (B*u (t) + Q*y* (t)) (2.13) 

Further, the functions Y” (0 and y(t) , and by virtue of (2.13) the function uo (t) , can 
all be assumed continuous on the interval LO, 01 (after a possible change in their values 
on the set of zero measure), therefore a mapping M : h - I (o), exists which will be 
linear for reasons analogous to those in the f~ite-dime~ional case. In fact, the mapping 
M is a product of the linear mappings H E h + (u’ (t) and Y” (8)) -v (0) E V. The 
linearity of the first mapping follows from the infinite-dimensional analog of (1.9). The 
existence of the second mapping is guaranteed by the Assumption 2. 

Let us consider, for an arbitrary s > 0 , the functional Igs (u) of the form (1.16) in 
which u (tf Ed Ls (s; u) and yJ (g, u)(t) E ‘JV 1s; Vt Ss P solution of (2.5) in the interval 
(a, wf satisfying the initial condition ys (g, U)(S) = g E H. (Such a solution exists and 
is unique by virtue of the Assumption 1 and the time independence of the operators A 
and B). Since the operators A, B, P Q and R are stationary, the extremal element 
us0 (g, t) of this functional can be obtained from the extremal element u” (g, t) of the 
functional (2.7) by displacing it in time ugo (g, t) = u” (g, t - s). This also impliesthat 
?A?* fg, u*“)(t) = Y” (&?I qt - ‘4. 

Let us now introduce the function Fs (g, t) E W (s; V) as a solution of the equation 

&Y. = - MY8 - Py8” (t) - Qulo (t), t > s 

(‘ys E iv (s* VI* ys” (t) = YsO (g, %“)(t)) 

Clearly, y. (t) = yr (t) and ut*, (g. tf ‘= ?y, (g, t - s). 
From the above relations it follows that the linear operator which puts the elements 

g E H and \P, (g, s) in one-to-one correspondence, is the operator M defined above. 
Using now the arguments employed in Theorem 1 and based on the principle of optimal- 
ity (the dimensionality of the spaces does not enter this argument), we obtain 
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Further, in accordance with the 

mations in (1.18) remain valid 
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MyO(t) = Y (t), t>,o (2.14) 

definition of the functions Y” (t) and IP (t), all transfor- 
and the operator M will continue to satisfy the relations 

(1.5) in the space H. In particular,we find that (oh,, h,) = (h,, A&,) for any hi E H. 
From this it follows that [ll] the operator M , as operator H - H , is Hermitian. 

On the other ha&in accordance with the Assumption 2 we have Mh = v (0) E V, 
so that M will be a linear mapping H - V. The closed graph theorem [ll] (since 
D (M) = H and the mapping M is closed) now shows that the mapping M is continuous 

and, as the mapping H -t V. The theorem also implies the existence of the continuous 

operator M* : V* + H conjugate to M : H -+ V. We note that M*h = Mh for h E H. 
Let us now consider the relation 

T 

\ [($- y + A*‘? + ~y”+@“,s) -<I$ y” - Ay’- Bu”, Mf)] dt = 0 (2.15) 

0 

(E (Q E w (0, T; VI) 

The validity of (2.15) follows from the definitions of the functions y” (t) and B (t) and 
of the operator M , and together with (2.13) and (2.14) it yields 

T 

s 
(S~~(%C(tbdt=O, %(QEW(O,T; v) (2.16) 

0 

S f M*A + A*M + P + (M*B + Q)R-1 (B*M + Q*) 

The operator S is continuous on V - V*. Therefore from (2.16) (with the Assumption 

3 taken into account) it follows that .Sh = 9 if h E V,. Since the element h E V, is 
arbitrary and V, is dense in V , this becomes equivalent to the relation (2.8), and this 

completes the proof of Theorem 3. 
N o t e 4. From the proof of the theorem it follows that Assumption 2 can be relaxed. 

It is sufficient to require that it only holds for the functions g (t) of the form 

PyO (t) + quo (t). 
Theorem 4. Assume that the Assumptions l- 3 hold and a linear bounded opera- 

tor F : Ff - u exists which satisfies the following conditions: operator A, = A + BF 
is L2-stable, and for some E > 0 the following inequality is satisfied 

CS 

s 
[<RD (t), v (t)> + 2 (Y(V) (a Qv (9) + (J’Y (v) (t), Y(V) (t))l drZ (2.17) 

0 

e r (I u ('I - J’Y (0) (9 l12dL v (t) - Fy (v) (t) E L2 (0, u) 

0 

Then a continuous linear operator M : H --f V, satisfying the conditions (2.8) will exist. 
The proof is similar to that of Theorem 2, and is carried out by passing to Theorem 3 
with help of the substitution u = v - &‘zJ. 

If the relation (2.9) holds for the operators A, and B , the inequality (2.17) can be 
written in the following frequency form: 

<II (o)v, v> > E 11 v - F (foE - A)-‘Bv 11 2 
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ON THE CONSTRUCTION OF GENERAL SOLUTIONS OF THE ELASTICITY 
THEORY EQUATIONS FOR TRANSVERSELY ISOTHXIC INHOMOGENEOUS BODIES 

PMM Vol.40, Ns 5, 1976, pp, 956-958 
R M. RAPWPORT 

(Leningrad) 
(Received April 29, 1975) 

The solution is presented for the three-dimensional problem of the theory of 
elasticity of transversely isotropic elastic bodies, where the elastic character- 
istics vary arbitrarily along the axis of ~mme~ of the elastic properies of the 
medium. The solution is written in orthogonal curvilinear cylindrical coordi- 
nates and is represented by using two independent functions. The question of 
separation of the boundary conditions in the plane of isotropy is examined. 

A number of investigations, which examine primarily the equilibrium of 


